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EVALUATION

The necessity for wmore complex software systems in such areas as
command and control and avionics has led to the desire for better
methods for predicting software errors to insure that software
produced 1is of higher quality and of lower cost. This desire has been
expressed in numerous industry and Govermment sponsored conferences,
as well as in documents such as the Joint Conmanders’ Software
Reliability Working Group Report (Nov 1975). As a result, numerous
efforts have been initiated to develop and validate mathematical
models for predicting such quantities as the number of remaining
errors in a software package, the time to achieve a desired
reliability level, and a measure of the software reliability. However,
early efforts have not produced models with the desired accuracy of
prediction and with the necessary confidence limits for peneral model
usage,

This effort was initiated in response to this need for developing
better and more accurate software error prediction models and fits
into the goals of RADC TPO No. 5, Software Cost Reduction (formerly
RADC TPO No. 11, Software Sciences Technology), in the subthrust of
Software Quality (Software lodeling). This report summarizes the
development of classical and Bayesian estimates for parameters of a
model for predicting quantities such as the expected number of
remaining errors, achieved reliability, and time to detect and correct
a specified number of errors that assumes a software error is not
corrected at a piven time with probability 1 (i.e. imperfect
debugping). The importance of this Jevelopment is that it represents
the first attempt to develop software error prediction models that
incorporate imperfect debugging, and thus more closely reflect the
actual software error detection and correction process.

The theory and equations developed under this effort will lead to much
needed predictive measures for use by softwarc wanagers in more
accurately tracking software development projects in terws of test
time needed to achieve given reliability and error objectives. In
addition, the associated confidence limits and other related
statistical quantities developed under this effort will insure more
widespread use of these modeling techniques. Finally, the predictive
measures and equations developed under this effort will be applicable
to current Air Force software development projects and thus help to
produce the high quality, low cost software needed for today’s
systems.,

Qllow 12 M&(\

ALAN N. SUKERT
Project Fngineer
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1. INTRODUCTION

In this report we present two methods for statistical infer-
ence of the parameters of the imperfect debugging model proposed
by Goel and Okumoto [2]. The first one is the classical approach
based on maximum likelihood estimation and the second is a Bayesian
approach based on the prior distributions of the unknown parameters.
The parameters under consideration are the initial number of soft-
ware errors, N, the error occurrence rate for each error 1\, and
the probability of perfect debugging p . The probability of
imperfect debugging is q where g=1-p.

The model in [2] is based on the assumption that the time
between software errors follows an exponential distribution with
parameter i\ where i is the number of remaining errors. Also,
the error removal time is taken to be negligible. By letting X(t)
denote the number of errors remaining at time t , the stochastic
behavior of X(t) is analyzed as a semi-Markov process and the one

step transition probability from state i to state j is given by

Qij(t) - Pij.Fl(t) ' (1.1)

where

i\t

F (t) = 1-e" t1.3)

and the transition probabilities pij' i,3=0,1,2,...,N are given

by
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From the basic model (1.4), expressions for the following
quantities have been derived in [2].
« Distribution of time to a completely debugged system.
+ Distribution of time to a specified number of remaining errors.
+ Distribution of number of remaining errors.

+ Expected number of errors detected by time t.
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Also, the reliability function at the kth stage, i.e. between the

(k=1)st and kth failures, is obtain.d as

k=1
g k=1\ kej=1 §=
Ry (x) g( 3 )p 9 Py (k=j-1) %)

where

e =NAX
FN(X) = 1-FN(x) = e

(1.5)

(1.6)

In the following sections we will use these results for

statistical inference about N, p and \.

e




2. MAXIMUM LIKELIHOOD METHOD

In this section we use the method of maximum likelihood to
draw inferences about N, p and A based on available data (t.y)
for software errors. Here, + is the vector of times between soft-

ware failures while y is a vector of y,'s where

1, if the ith failure is caused by an error due to
¥; imperfect debugging,

0, otherwise.

It should be noted that we make use of the data (t,y) because the
process X(t) , the number of remaining errors at time t, is

unobservable. Also, such data can be available from actual software

error reports.

2.1 Likelihood Function and MLE's

As pointed out above, the state of X(t) cannot be observed.
However, we note that the sequence of error corrections forms a
sequence of Bernoulli trials. Suppose that (i-1l) failures have
been observed and the ith failure has not occurred yet. Then the
number of errors eliminated up to now is distributed as a binomial
distribution with parameters (i-1,p) and its expectation is p(i-1l).
Also, the expected number of errors occurred due to imperfect
debugging is gq(i-l). Since the initial number of errors is N ,
the expected number of errors remaining in the software at

this stage is given by N - p(i-1).




Therefore, the distribution of the time between (i=-1)st and ith

failures is given by

=(N=p(i=1)]) x t4
£(t IN,p,\) = (N-p(i=1)] re PR T S R o)
where n is the number of observed software failures.
Then the likelihood function for a given ¢t s
n

n £(t1m.p.x). (2.2)
ie=1

The next (ith) error will occur randomly from the remaining
(N=p(i=1)] errors and hence the probability of this error being due to
the imperfect debugging category is q(i-1)/(N=p(i=1)] . Therefore,

the distribution of Y1 is

(=1) )" N=i=1) o
- il St ol £ = .
p(Yi Yi'Nop) {N-p(i--ﬂ’ ‘N-p(i-l) ' Lml,2;:¢e,01 (2.3)
where
Yy = 0 or 1.
Then, the likelihood function for given y is
n
LZ(NoP'X) - 1219(Y1-Y1‘N'p) . (2.4)

Due to the independence of t and y, the likelihood function of

N, P, A\ c¢an be written as
LIN,poAlt,y) = Ly (NopoXIt) Ly (Nopod 1Y) . (2.5)

Now we choose R, ﬁ and \ which maximize (2.5). Maximizing

L(N,p,\It,y) implies maximizing the log likelihood function. Let




AN, PV Y) = log LN PN T Y)

n n
= nlog\ =\ ¥ lN-p(\-l)l(‘b T oy, log q(i=1)
i=1 i=1
n
+ ¥ (l-y‘)XOQIN-(l-l)). (2.6)
i=
Then N, p and L must satiaty
at | o
- Sl
M .o (2.7)
Lo
A\
or
n n L=y
A B %, » § memeien (2.8)
jm) b ey N=(i=1)
n n
P X H—lH\ = T y,/Q (2.9)
i=1 (=1
n
n/y = Y IN=p(i=1) 1t (2.10)
{1 4

gimultaneous non=linear equations (2.8), (2.9) and (4.10) can be

aolved by numerical methods an describhed below,  From (2.

n
A\ = n b lN-—p(t—l)H‘.
i=1

gubst ftuting (2.11) into (&.8) and (2.9), we get

n
n Ly n ¥ Y
et — .
tN.p) - ‘1‘ N-(i-ﬁ) T on Wi
¥ O(N=p(i=1) )t
=1
6

10) we get

(2.11)
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and

n
qniil(x-l)ti -
®(N,p) = — - Ly, =0. (2.13)
T (N-p(i-1)]t, i=1
i=1

We now apply the Newton-Raphson method [4] for solving the two
simultaneous non-lineair equations (2.12) and (2.13). Thus, for
given initial values N, and Py of N and p the values of the

first approximations are

N, = No+h (2.14)
P) =p,tk (2.15)
where
f. .0 -0~ £
h=-3 Omp.O_wO péo (2.16)
N, 0 P:O N, O p,O
£ an e o
ke —o—HaR -t N'°f° ' (2.17)
N,0%,0" ®N,0 "p,0
o0t 2 (2.18)
! N"'-'No:p:po
and f = -a-g

p.0 % 3p N=N, . P=B,

% %, 0 and o are similarly defined.

P, 0

The values of N and p are successively modified until
equations (2.12) and (2.13) are satisfied to a defined accuracy;
such values being the estimates N, p . Finally, we get

A by substituting N and »p




into (2.11). These are the maximum likelihood estimates (MLE's)

of N, p and \ for given data t and y.

2.2 Likelihood Contours

The log likelihood surface for the paramet.:rs N, p and )

is given by (2.6) as

n
L(N,p,AIt,y) = nloga -2 121 {N-p(i-l)Jti

"t

n
+ izlyi log q(i-1) + g (1~y,) log{N=(i-1)]} .

1

For given t and y, this defines a 4-dimensional surface
as a function of N, p and A . The maximum value of this log

likelihood is obtained when N=R, p=p and A=1 i.e.

Lo ® 1 = t(@.BAILY) . (2.19)

In order to study the nature of this surface, we proceed as follows.

Let
LN, P AIL,Y) = p-2(N,P.AIE,Y) . (2.20)

where , 21 is some constant.

We will investigate the nature of this surface by fixing

N, E: and A » One at-a-time and varying the other two parameters.

Suppose we fix N=N. Then, from (2.6) we have

LA n
f(p,2) = nlOgX-\itl[N-p(i-l)]ti«o-it y; logq(i-1) = ¢, (2.21)
= =]

e

e, it D Gl



<1

where
A a a n ~
C=p 1(N.p,\|£,1)-—iil (1-yi)10g[N-(i-l)J . (2.22)

By fixing o and hence C, equation (2.21) gives one contour
in the (p-\) plane. To draw these contours for each value of , ,
we choose several values of p and solve (2.21) numerically for the
corresponding values of A\ . These pairs (p,\) give the desired
contour.

Similarly, contours in the (N=-A) and (N-p) planes can be

obtained by fixing p=p and A\ =1, respectively.

2.3 confidence Regions

In many instances interest lies in studying the joint
100(1-¢)% confidence region for the parameters. For this purpose
we use the property that for large n the likelihood ratio has a

xz- distribution. 1In our case,

~ ~ ~ 1 2
L(N,p,AIL,y) =2(N,p,AIL,y) = 2%3;4 (2.23)

defines a 100(l-a)% confidence region for N, p and 1\ .

Joint confidence regions for (p,\), (N,p) and (N,\) can be
obtained from (2.23) by using a numerical method similar to that
of Section 2.2.

Now, by writing
l(NoPo’.'Eo!) - p l(ﬁnboi'f;o!) ' p 21,

we get

IR

| 9 4‘




X3;q = 2010t (NP A1 Y) - (2.24)

Equation (2.24) can be used to study the relationship between o

and the confidence coefficient (l=-a).

2.4 Asymptotic Properties

For large sample size the mle's are normally distributed i.e.

N N
(b)~N((p).:cov> as n-ee, (2.25)
A A

The variance-covariance matrix is given by

' np M :
Boor * " T Y (2.26)
i fap T
where
2
Nk .-g(sg'_gs), a,b=N,p,\ . (2.27)

For the model under consideration, we have

n
ty = L. 1/(N=(i-1))(N-p(i-1)) (2.28)
1-1 ‘ R
!
Tnp = Tpy = 0 (2.29)
p
oy “ O " iifl 1/(N~p(i=1)) (2.30)
Ly / ) ¥
= £ (i=1)/(N=p(i-l) if 0
L (N-p q
tpp - (2.31)
- if q=0. 3
10
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n
£ (i=1)/(N-p(i-1)) (2.32)

i=]

2
Ty n/7\° . (2.33)

2.5 Illustrative Example

We use a numerical example to illustrate the computations of
mle's, likelihood contours, etc. based on the expressions derived
in Sections 2.1-2.4. Since data from actual software projects is
not available in the desired format, we use simulated data for
this purpose. A total of 45 (ti,yi) values were simulated for N=50
p=0.9 and A =0.1 and are given in Table 2.1l. Details of the
simulation are given in Appendix A.

For this data set, we solve equations (2.12) and (2.13) by

applying the Newton-Raphson method with initial values
Ny = 46 and Py = 1.0 .

After six (6) iterations, the solution of (2.12) and (2.13), with an
accuracy of 10-3,13

N =251.3 and p = 0.919.
Substituting these values in (2.11l), we get %=0.085. For these
mle's the maximum value of the log-likelihood function is given by

(2.19) as

Loax * 1=-16.

Now we get the likelihood contours for p=1.1, 1.3 and 1.5.

First we fix N=N=51.3. Solving equation (2.21) for various p,




TABLE 2.1 DATA SIMULATED FROM IMPERFECT DEBUGGING MODEL
(N=5S0, p=0.9, A=0.1)
I t(I) y(I) I t(1) y(I)
1 0.296 0 24 0.127 0
2 0.156 0 25 0.034 0
3 0.239 0 26 0.013 0
4 0.174 0 27 0.444 0
5 0.204 0 28 1.690 0
6 0.182 0 29 0.037 ]
7 0.323 0 30 0.034 0
8 0.174 0 31 0.142 0
9 0.365 0 32 0.287 0
10 0.074 0 33 0.568 (]
11 0.087 0 34 1.310 0
12 0.230 0 35 1.668 1
13 0.520 0 36 0.754 3
14 0.084 (] 37 1.451 0
15 0.380 0 38 0.038 1
16 0.114 0 39 0.499 1
17 0.396 0 40 0.372 0
18 0.256 ] 41 0.058 ]
19 0.200 0 42 0.529 0
20 0.072 (] 43 0.359 0
21 1.253 0 44 1.020 0
22 0.518 0 45 2.083 0
23 0.904 0

12
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the contours are obtained as shown in Figure 2.l1l. Contours with

p=p and 1A =1 in the (N-A) and (N-p) planes, respectively, are
obtained similarly. These are shown in Figures 2.2 and 2.3,
respectively. é
Now we use equation (Z2.24) to study the relationship between
the confidence coefficient (l-a) and the constant o . For given 1,

and various values, the coefficients (l-a) are obtained from the

x2 table such that (2.24) 1s «tisfied. Thus, for our example we have

2 :
X3;q = 2Uim#)(=l6)

and for p=1.1, the value of (l-a) from the x° table is 0.638.
Similarly for #=1.3, l=9=.022 and for p»=1.5, l-a=.01. Plots of
confidence level vs » for &=-=10,-12,-14,-16,-18 and -20 are given
in Figure 2.4. cConfidence levels corresponding to the value of p
are also shown on the contours in Figures 2.1, 2.2 and 2.3.

Finally, the asymptotic distribution of (ﬁ;ﬁ:i) is given by

(2.35).
The estimated variance-covariance matrix for the simulated

data is

35.5 =0.0122 -0.0128

3 ¢.08x10"4

4

«0.0122 2.25 x 10"

™M
]

cov
-0.0128 6.08 x 10~ 6.41x 10”

and the estimated correlation coefficients are

N

pr = - 0,15

a

by = = 0.56 l

Sy = - 0.51 ,

13
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3. BAYESIAN INFERENCE

In this section we use a Bayesian approach for obtaining
posterior point estimates and the highest posterior density (HPD)

region for parameters N, p and 1\ .

3.1 Prior Distributions

The choice of the prior distribution for a parameter is
governed by several factors. Among these are the range of values
the parameters can take, the nature of the prior distribution based
on historical data, and case of analytical tractability. In our
case, the conjugate priors (see [l]) for N and A are gamma dis-

tributions while the conjugate prior for p is a beta distribution,

Le@at
PN aN®"! o BN , N>0 (3.1)
vipiap” Tii-p® Y 4 gl (3.2)
P ar"l e M At (3.3)

For the case when we know very little about the parameters
i.e., for .the case of prior ignorance we choose a=u=0, B=Y=0

and n=p=0.5 as proposed by Jeffreys (see [l]) and we have

p(N) & 1/N (3.4)
plp) a p~t/2(1-p)~1/2 (3.5)
plr)ye 1/2 ' (3.6)

These are called the non-informative prior distributions.

We also assume the independence of prior information about

N, P and 1, i.e.

p(N,p,)) = p(N)p(p)p(})) . (3.7)
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3.2 Joint Posterior Distribution

By applying Bayes theorem we obtain the joint posterior dis-

tribution of N, p and 1A for given priors and the data i.e.
p(N,p,A|t,y) x P(N,p,\)L(N,p,A[t,y) (3.8)

where the likelihood function L(N,p,A|t,y) for given t and y
is given by equation (2.5).
et R, p and A be the Bayesian point estimates for N, p
and )\ , respectively. That is, the point (ﬁ.ﬁ,i) is the mode of
the joint posterior distribution p(N,p,xlg,z). In other words, }

p(N,p,A|t,y) attains its maximum at (N,p,%). Therefore, N, p and i

A must satisfy

35 log p(N,p, AL,y = 0 (3.9)
%5 log p(N,p,\|t,y) = 0 (3.10)
%7 log p(N,p,A|t,y) = 0 (3.11)
where
n

log p(N,p,A|t,y) xn log - izl{N-p(i-l)}ti

n n
+ I yilog(l-p) + I (l-yi)log{N-(i-l)}
i=] i=1

+ (a=1l)log N - BN

+ (u=1)log A = yA

+ (v=1)log p + (p=1)log(l=-p) . (3.12)

19
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Then we get

n n 1=y
r Y G-
LS ETTTJTY“ ™ SRy (3.13)
iml iml
\ :1(1-1n =Yy, /(1=p) + w-{— -0 (3.14)
1=
n/\ = P (N=p(i=1) )¢, N N (3.1
iml A

Simultaneous non=linear equations (3,13), (3.14) and (3.15) can be

solved by numerical methods discussed in Section 2.1.

33 H.P.D. Regions

posterior distribution, p(N,p,\|t,y). As an approximation, we may
use the fact that for large samples p(N,p,\|[t,y) tends to normality

(see Box and Tiao [1]1). Therefore,

P(N'Po\l\ !) 2
- 2 log = s (3.16)
p (N, p, \lt y)

It follows that the contour defined by

1 &

" \“:“ (3.17)

log p(N,poA[t,y) = loa p(N,p, VL, y) =

encloses a region whose probability content is8 approximately (l-a).

Then the 100(1=a)% H.P.D. region is given by

f(N,p,)\) = C (3.18)

where

20

It {8 ugeful to obtain the Rayesian confidence region or H.P.D.

region which gives the probability content of a contour for the joint




pra——

n
£(N,p,\) = nlog\- 1z1[N-p(1-1)]ti

n n
+ I y,;log(l-p)+ I (l-y;)log(N-(i-1))
i=1 i=l

+ (o=1)logN=- BN
+ (b=1l)log =Y\
+ (n=1l)logp+ (p=1)log(l=-p) (3.19)
and
c = £(N,p,1) --21-x§,a x (3.20)

The contour defined by (3.18) can he avaluated hv numerical methods

as discussed in Section 2.1.

3.4 Numerical Example

To illustrate the computations for the various quantities
given in Sections 3.1, 3.2 and 3.3 we use the simulated data of
Table 2.1. Using the non-informative priors given in equations
(3.4), (3.5) and (3.6), the Bayesian point estimates of N, p, )\
are obtained by solving equations (3.13), (3.14) and (3.15) and are

N = 51,43

= 0.927

o>

>

= 0.0836 .
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The Bayesian H.P.D. region for N, p and ) for this data
set is obtained from equation (3.18). Taking a = .10, the 90%
H.P.D. region is shown in Figure 3.1l.

The 50%, 75% and 90% Bayesian regiong for p and 1\ when
N = ﬁ are given in Figure 3.2. Similar regions for N and 1
(p*p) and for N and p (\=i) are given in Figures 3.3 and 3.4,
respectively.

It is also useful to study the shapes of the posterior dis-
tributions of parameters N, p and A . These are obtained by
fixing the other two parameters at their Bayesian point estimates.
Plots of such distributions are given in Figures 3.5, 3.6 and 3.7

for N, p and 1 , respectively.
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4. CONCLUDING REMARKS

In this report we presented two methods for statistical infer-
ence of the parameters N, p and )\ for the imperfect debugging
model. Using the method of maximum likelihood, expressions were
derived for the mle's, the likelihood contours and the confidence
regions. A Bayesian approach was used to obtain the Bayesian point
estimates of N, p and X . Bayesian H.P.D. regions for these
parameters were also studied. Numerical examples based on sim-

ulated data were used to illustrate these results.
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APPENDIX A

SIMULATION OF DATA (t,y)

In this Appendix we describe the procedure used for simulating
the data on times between software failures and the categories of
errors. Recall that ti denoteg the time between the (i-1l)st and
ith software failures. Also, assuming that a software error can
be identified as being the one due to imperfect debugging, whenever

it occurs, we have

1 , if ith failure is caused by the error due to

¥ X imperfect debugging
20 , otherwise .

Therefore, ti and y; are the data needed for statistical infer-
ence of parameters N, p and )\ in the imperfect debugging model.

A flow chart for simulating these data is given in Figure A.l.
First we initialize the parameters N, 1, p, I (software failure
number), NR (number of remaining errors) and EI (number of errors
due to imperfect debugging. Then a randem number RN which is
uniformly distributed over (0,1) is generated. Now, from equation
(2.1), the random variable Ti has an exponential distribution
with parameter NR:l ; i.e.

-NR'X-ti

i
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For some value RN

l1-e = RN (A.2)
and hence the simulated value of t, is given by

1
ti = NReT log(1-RN) . (A.3)

Next, we generate a new random number RN. If this new number

RN < q , the probability of imperfect debugging, the quantity EI
is incremented by 1 and the number of remaining errors remains
unchanged. If RN > q , the number of remaining errors NR is
decreased by 1. An error which occurs next is selected randomly.
For given EI and NR the probability that an error due to imperfect
debugging is detected is EI/NR. Hence, if for a still new random
number RN, RN < EI/NR, then we set ¥y = 1 and decrease EI by 1.
Otherwise, ¥, * 0 . After repeating this procedure n times, we
obtain the simulated data set (t,y) where ¢t = (tyetyseeent)) and
Y = (yl,yz,...,y n). Table 2.1 shows a data set simulated by this

procedure, where N = 50, p = 0.9, » = 0.1 and n = 45,
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